Mastodon Apple Silicon – Josh Hrach

Thought experiment on upcoming Apple Silicon Macs

I’m not one to put a lot of stock into rumors. Occasionally, though, one comes across that gets me thinking. This was one of them.

There’s a lot of speculation there. One of those items caught my eye, though.

A15 is aiming for 30% speed improvement.

Apple is known for having the fastest phones thanks to their own silicon. Their chip team is fantastic, making an A15 with a potential 30% speed improvement over the A14 quite likely.

What impact would this have on the Mac, though?

The M1

In November, Apple announced the first Macs with their own silicon. The M1, based on the A14 chip featured in the iPhone 12 series and the 4th generation iPad Air, quickly gained a reputation for amazing performance for the amount of power required. It scored the highest single-core score on Geekbench, and while it was beaten in multi-core, it was no slouch, either.

While the A14 has a 6 core architecture (2 performance cores, 4 efficiency cores), the M1 has an 8 core architecture. The additional 2 performance cores no doubt help bring up the M1’s multi-core score and help make the latest Macs truly fast machines.

The M1 has allowed Apple to take beloved Macs like the MacBook Air and simultaneously:

  • Increase CPU performance by up to 3.5x over the previous MacBook Air
  • Increase battery life by 50% (from 12 hours to 18 hours)
  • Remove the fan

The MacBook Pro got similar improvements:

  • Increase CPU performance by up to 2.8x over the previous MacBook Pro
  • Increase battery life by 100% (from 10 hours to 20 hours)

While retaining the fan, many users report hardly ever hearing the fan in a MacBook Pro, nor feeling excessive heat from the device, even under heavy workloads.

The (Theoretical) M2

With everything Apple could bring because of the M1, what could the M2 provide? Where can our speculation start?

I’m going to start with the rumor quoted above.

If we assume the M2 will be based on the A15 chip, and we take the 30% improvement as a finality with the A15, I think we could safely assume such performance increase would come to the M2.

According to Geekbench scores, the M1 scores approximately 1700 in single-core and 7100 in multi-core. Assuming a 30% increase for the M2, I would assume that takes the single core scores above 2000 (and potentially up to 2200). Geekbench browser shows Hackintoshes with AMD Ryzen 9 5950X at that range, but I would assume these are overclocked. Regarding multi-core, assuming a more modest 20% increase (though I don’t see why 30% wouldn’t be possible), that gets the M2 up to 8500.

And an M2X?

This theoretical M2 is with the same 8 core architecture in mind. What if Apple made the M2 more than 4 performance cores?

While you can’t really just multiply your multi-core score by the number of performance cores, I’m going to do that just as a thought exercise. How close could Apple be to having their own silicon out-perform even their most expensive Mac?

First, let’s look at the current high end Macs. The (recently discontinued) iMac Pro was configurable up to an 18 core Intel Xeon W-2191B configuration. Its multi-core score is around 13,300. The Mac Pro’s base configuration is a 12 core Intel Xeon W-3235 scoring at 12,000. The highest Mac Pro configuration, with a 28 core Intel Xeon W-3275M, maxes out at just above 19,000.

Naively assuming doubling our performance core count would double our multi-core score, an M2X with 8 performance cores could potentially have a score of 17,000. That easily out performs the iMac Pro and takes us into Mac Pro territory. Should going to 8 performance cores not double our multi-core score, however, I do think an M2X would still beat out the iMac Pro easily.

Whether or not we see a Mac Pro this year with Apple Silicon, I think Apple is easily on their way and will definitely complete their 2 year transition on schedule. By the time it’s done, I feel we will see the following configurations:

  • M# – 4 performance cores, 4 efficiency cores. Focused on the ‘lower end’ of the Mac spectrum (MacBook Air, Mac mini). Easily outperforming today’s Intel-based Mac portable line.
  • M#X – 8 performance cores, 4 efficiency cores. Used in the MacBook Pro and iMac lines. Potentially outperforming anything up to (and maybe including) today’s Intel-based Mac Pro.
  • M#Z (or some other identifier) – 12+ performance cores, 4 efficiency cores. Mac Pro option, providing amazing performance with less power consumption, easily replacing the current Mac Pro.

I was personally impressed with the M1 Macs that were announced. When it becomes time for me to get a Mac (likely with an M2), I know I will be thoroughly pleased with its performance. The Mac’s future is very bright at this point.

Speculation on Apple Silicon in upcoming Macs

Ever since WWDC, we’ve been eagerly awaiting Apple’s first Macs running on Apple Silicon. Will they be drastically redesigned? How well will Apple Silicon Macs perform?

Along with announcing the transition in June, Apple provided a Developer Transition Kit to help developers prepare for building their apps for the new architecture. It was provided as a Mac mini enclosure running an A12Z chip, the same in the latest iPad Pro models. While (presumably) designed just for the iPad, the chip worked well enough to run macOS Big Sur. From developer chatter on Twitter, it seems to run fairly well. The benchmarks were decent, outperforming the MacBook Air in a device that isn’t intended to showcase the power of Apple’s Mac-intended silicon.

Apple builds a lot of custom silicon. Even the S-series chips used in the Apple Watch are based on A-series designs. Might this basis allow for a clearer understanding of macOS support on Macs?

This morning, a post by MacRumors shared information about an iMac coming in 2021 running an “A14T” chip. If true, what might this mean for Macs on Apple Silicon? While we are less than a month away from knowing details about the first available Macs with Apple Silicon, here are some thoughts I have.

Stronger Tie to iOS Devices

When Apple announces a new version of iOS, by announcing the devices that support it, they also clearly signal what devices can’t. Occasionally, a release will drop support for one or more devices, typically devices with the same chipset. For instance, iOS 11 dropped support for the A6, and iOS 13 dropped the A7 (and devices with 1GB of RAM running on an A8). If Mac chips are based on A-series designs, we may see similar drop offs with devices. Instead of saying an OS release requires Macs from some year and up, they could just say Macs with a particular chip.

With this change, I also suspect that we will see Macs and iOS devices from a particular year, running on the same chip, to lose new OS support at the same time. For instance, should iOS 20 drop support for the A14 (announced this year in the iPad Air 4 and iPhone 12), the macOS release of that year could also drop support for the Macs running the Mac-equivalent chip.

Now, why would that happen? Why can’t Macs, with higher specs, support OS releases for longer? They technically could. But I think one thing to consider is a big feature of running Big Sur on Apple Silicon: Running iOS and iPadOS apps natively on a Mac. When an iOS app is built with a minimum supported version of iOS 14, for example, the Apple Silicon Mac must also support the APIs required to run that app. That means a stronger tie between macOS and iOS. It also implies a strong connection between the hardware.

Apple devices already are known for incredible support when it comes to OS updates. No other manufacturer ensures their smartphones get as many major releases as iPhone. And this isn’t anything new. Even the second generation iPad supported 6 major versions of iOS during its lifetime! Right now, the average for iOS devices seems to be between 5 and 6 years. However, macOS Big Sur is available for some Macs that are 7 years old. So, I see this tighter relationship between Macs and iOS devices to culminate in one of two changes:

  • Macs start supporting only 5-6 major OS releases, in line with iOS/iPadOS devices – I don’t see this as likely, as Apple would not want to be seen as reducing support of their most expensive computing product line. Then people might say, “When it ran Intel, they would support 7 year old Macs. Now they barely can last 5 years!” I think Apple would want to show that their Macs have better support on Apple Silicon than Intel.
  • iOS/iPadOS devices start supporting OS releases for more than 6 years – Should macOS stay at supporting Macs that are 7-8 years old, perhaps one day we’ll have an iOS device that can be said to have supported 7-8 major OS releases now. They support 5-6 now, and the A14 in this year’s products is so far ahead of the A8 and A9 currently supported at the low end with iOS 14 that I can see it easily lasting to iOS 21, 22, or beyond.

Performance vs Battery Life

Already, Apple is comfortable with making variants of their chips for different products. This has been true ever since the A5X in the third generation iPad. Apple continues that trend to this day, with the iPad Pros running the A12Z (virtually identical to the A12X, with one additional core). These improvements typically are for the benefit of the iPad while retaining great battery life.

General expectations are that Macs running on Apple Silicon will have better battery life and better performance than their Intel counterparts. How will that be delivered?

I’m curious if we’ll see trade-offs made between the portable and desktop lines. For instance, perhaps we would find the A14T (the rumored Mac chip) in both the MacBook Pro and iMac. This chip might be the Mac-specific version of the A14, given additional cores to power what people expect from a Mac. It may even be an offshoot of the A14X (if one such chip launches later this year). So you would see an A14, A14X with improved graphics, and A14T with additional changes for the Mac.

This same chip might be able to scale across Apple’s entire Mac line. On the MacBook Pro, it would be tuned for better battery life with moderate performance. But for the desktop, with constant power and better cooling, it might be tuned for higher performance. Pair it with additional RAM and Apple’s custom GPUs, and you’d have a singular chip to track for Apple’s Macs during any given generation. Gone would be the days of choosing to buy a new MacBook with an i3, i5, or i7 processor. Instead, you’re buying a Mac with an A14T. You just are choosing how it’s tuned.

Is this how it’ll all turn out? Again, we will have to wait and see. But however it ends up, I’m excited to see what this new generation of Mac will bring.